Indian Statistical Institute B.Math.(Hons.) I Year Second Semester Mid Semester Examination, 2004-2005 Algebra II Time: 3 hrs Date:11-03-05 Total Marks : 50

Attempt all questions

- 1. State whether the following are true or false and justify your answers.
 - a) $I\!\!R[x, y]$ is an Euclidean domain. [3 marks]
 - b) $x^2 + y^2 + 1$ is irreducible in Q[x, y]. [3 marks]
 - c) $\mathbb{Z}[x]/(2x-6, x-10)$ is an integral domain. [4 marks]
- 2. Let k be a field and let $A = k[x, y, z]/(xy z^2)$ where x, y, z are variables. Let $\bar{x}, \bar{y}, \bar{z}$ denote the images of x, y, z respectively in A. Prove that the ideal $I = (\bar{x}, \bar{z})$ is a prime ideal of A. [10 marks]
- 3. Let A be a commutative ring with identity and let \mathcal{M} be a maximal ideal of A such that every element of the form 1 + x for $x \in \mathcal{M}$ is a unit in A. Show that \mathcal{M} is the unique maximal ideal of A (i.e. (A, \mathcal{M})) is a local ring). [10 marks
- 4. Let m and n be two integers. Prove that their greatest common divisor in \mathbb{Z} is the same as their greatest common divisor $\mathbb{Z}[i]$. [10 marks]
- 5. Prove that $x^n + x^{n-1} + \ldots + x^2 + x + 1$ is irreducible over **Z**, if and only if, *n* is a prime. [10 marks]